
ViSMA: Extendible, Mobile-Agent Based Services for the Materialization and

Maintenance of Personalized and Shareable Web Views
1

 G. Samaras, K. Karenos

Dept. of Computer Science

University of Cyprus

CY-1678 Nicosia, Cyprus

{cssamara, cs98kk2}@ucy.ac.cy

P. K. Chrysanthis

Dept. of Computer Science

University of Pittsburgh

Pittsburgh, PA 15260, USA

panos@cs.pitt.edu

E. Pitoura

Dept. of Computer Science

University of Ioannina

GR-45110 Ioannina, Greece

pitoura@cs.uoi.gr

1

Abstract

ViSMA (Views Supported by Mobile Agents) is a

prototype set of extendible mobile-agent based services

that allow the definition, materialization, maintenance

and sharing of views created over remote web-accessible

databases. The system’s primary goal is to support

mobile clients carrying lightweight devices of various

connectivity and resources such as portable computers

and PDAs by being completely deployed over mobile

agent technology. In this paper we propose a multi-tier

architecture on which the system is built and we present

the system’s features, which include view mobility,

shareable and personalized view creation and

customizable, automated view monitoring and updating.

The system has been fully implemented and tested using

three alternative client types.

1. Introduction

Data accessing in the recent years has been affected by

three major trends: the vast amount of available sources,

the increase of mobile and wireless clients and the need to

support personalization and customization. New tools that

can meet the presenting challenges must become available

to users. ViSMA is one such system that provides the

functionalities of defining, materializing and maintaining

database views by taking advantage of mobile agent

technology with additional features to support mobile and

wireless clients. The role of mobile agents in ViSMA is

twofold: Firstly, views are carried within mobile agents

called View Agents [8] and may relocate themselves to

reduce the distance from users that frequently request

them. Secondly, they are used for migrating to a remote

datasource and locally execute update propagation and

query materialization operations, relieving remote clients

and local database from performing this task while saving

precious network resources.

The ViSMA system is fully implemented in Java,

which is suitable for the development of mobile-agent

based applications mainly due to its platform

independence. We have also used Voyager ORB [6] to be

the mobile agent platform. The Extensible and Flexible

Library (XXL) [9] was used to instantiate the relational

database functions executed by the agents. At the lower

layer we utilized Tracker [2], an efficient location

management system, to enable agent coordination and

communication.

We have implement three alternative client

components that aim at supporting clients of variant

resource availability: the ViSMA Light Client Applet, the

ViSMA Servlet Engine and the ViSMA Client Agent.

2. Architecture

In order to allow the creation and maintenance of

distributed views we have designed a multi-tier agent-

based architecture. The architectural components are

distinguished based on their placement and functionality

(Fig. 1) to: Server Side, Database Side and Client Side

Components.

Figure 1: ViSMA Architecture
This work was partially funded by the Information

Society Technologies program of the European Commission, Future

and Emerging Technologies under the IST-2001- 39045 SeLeNe

project and the IST-2001- 32645 DBGlobe project

Servlet
Engine

Light Applet Visma
Agent

Client Side Components

Server Side

Components

Database Side

Components

Voyager Server

Web

Server

Observer

Data Holder

View Agent

Database

Voyager Server

JDBC

View

Evaluator

Assistant

DBInfo

Agent

Monitor

VDA

DB Meta |
Interface

VA Meta

Proceedings of the 14th International Workshop on Database and Expert Systems Applications (DEXA’03)
1529-4188/03 $17.00 © 2003 IEEE

We also distinguish the agents described below into

either mobile or stationary. Mobile agents may move

from one network node to another in order to complete a

predefined task while maintaining their state regarding

both data as well as internal variables. Stationary agents

migrate once to a specific node, remain (“park”) at that

location and periodically execute a task.

2.1. Server Side Components

The ViSMA server can be better characterized as a

View Dictionary, which keeps meta-data on participating

datasources and created views. With respect to views,

metadata include the current location of the View Agent

(VA) carrying the view as well as the view definition.

The lower levels of the View Dictionary (or ViSMA

Server) include the Voyager Server (i.e. the mobile agent

platform) and a Web Server that is used primarily for

remote class loading by agents. It is also used for

downloading the ViSMA applets, which are user side

components, also discussed below.

The basic agent of the ViSMA Server is the View

Dictionary Agent (VDA). The VDA is the central

communicational and coordinating agent, which is

contacted by users, or agents receiving requests via the

clearly defined ViSMA user-access interface.

The View Agent (VA) is another key agent of the

ViSMA architecture. A VA is a mobile agent that is

created once a user defines a view to be materialized and

it is initialized by the VDA. A VA is responsible for

creating, materializing and maintaining a view. During

this process the VA initializes and dispatches a number of

other supporting agents whose functionality is discussed

in the subsequent paragraphs of this section. A

fundamental VA feature is that its data can be shared

among all ViSMA clients. Also, the VA it allows for its

view to be queried by external entities. Therefore, sub-

views can be extracted from a VA view. Finally, since a

VA is a mobile agent this data can be carried with it as it

moves. Therefore view migration is achieved.

A VA consists of a hierarchy of Data Holders (DHs).

Each Data Holder Agent in the hierarchy is responsible

for handling an individual view fragment. A DH will

receive the definition of a view fragment and will become

responsible to materialize and maintain it. The VA is then

responsible to combine the fragments and produce the

final view. Effectively, DHs form the structure of the

materialized view.

Finally, Observer Agent (OA) is a mobile agent that

is used for creating personalized, non-shareable sub-

views by directly issuing user queries to a VA. The OA

may communicate directly with its client and may move

as its client moves.

2.2. Database Side Components

At each database site the Mobile Agent Platform

(Voyager) must be installed in order to allow agent

execution. This is actually the sole system requirement

since all remaining functionality is dynamically deployed.

The Assistant Agent is a stationary agent that

maintains a pool of connections to the database to serve

visiting agents [7]. This agent provides transparent

connectivity between the databases and the ViSMA

agents. Changes to the database connectivity settings need

only made known to the Assistant.

The DB Info Agent migrates to the remote database

site, collects its metadata (schema, types), sends them to

the VDA and finally self-destructs.

The Monitor Agent is another stationary agent sent by

some DH to enable view maintenance. A Monitor agent

“parks” at the remote site and periodically re-queries the

database and sends changes to the DH. Thus DH may

receive simultaneous updates from multiple Monitors.

 Another basic functional agent is the View Evaluator

Agent (VEA). A VEA is a mobile agent that is sent by a

DH to travel from one datasource to another and collect

and combine data retrieved thus materializing a fragment

of the final view (namely a simple view, see §3.2). Access

to the databases is provided by each local Assistant. The

VEA needs not be destroyed upon completion. On the

contrary, it can be reused to re-execute the materialization

plan, whenever necessary.

2.3. Client Side Components

A client component can be any entity that can contact

the VDA directly or indirectly. We have implemented

three alternative types or base clients, each of which can

support different types of users. The ViSMA Client

Agent provides each user with a private mobile agent that

can interact in a P2P manner with other agents, without

any VDA intercession. The second client type is Applet-

based and enables any user with any Java supporting

browser to download a light applet GUI to interact with

the View Dictionary. Finally, for users with no Java

support, the ViSMA Servlet Engine is provided. The

Servlet engine is a middleware component that accepts

standard HTTP requests through and replies in standard

HTML making it highly appropriate for relatively low

resource mobile devices such as PDAs and Smart Phones.

3. System Services

Throughout the rest of this section we will illustrate

the functionality of the system using a concrete example.

Consider the following distinct databases in a medical

information system. For simplicity, and to avoid going

into extreme implementation detail, we assume that each

of the following databases is represented as a single table

(Fig. 2).

Proceedings of the 14th International Workshop on Database and Expert Systems Applications (DEXA’03)
1529-4188/03 $17.00 © 2003 IEEE

Pa_Hospital

PatientID Pressure Temperature Pulse

Ni_Hospital

PatientID Condition Respiration Pressure

DoctorDB

PatientID LastVisit Diagnosis Medication

PharmacyDB

 Medication Price Available
Figure 2: Example Databases Schemas

A doctor visits two separate hospitals for patient

treatments, one in Paphos (“Pa_Hospital”) and one in

Nicosia, Cyprus (“Ni_Hospital”). The hospital databases

are updated several times a day regarding the condition of

patients. The doctor also maintains her own database

(“DoctorDB”) to trace treatments related to her personal

patients. “DoctorDB” database is also located in Nicosia

but managed by different database management system.

The PharmacyDB in Pittsburgh, USA keeps data on types

of medication.

3.1. Datasource Registration

In order for a datasource such as “Pa_Hospital”,

“Ni_Hospital”, “DoctorDB” and “PharmacyDB” to be

available for access, the administrator must register its

location to the ViSMA system. The administrator is

simply required to download the database definition

applet (or access the corresponding Servlet page if Java is

not supported) and provide the database’s location. Also

he/she must provide valid access codes. Registration

process is dynamic: Provided this information, the VDA

dispatches an Assistant Agent, which migrates and

connects to the database. The VDA also sends a DB Info

Agent to collect the Database meta-data. This strategy

allows for asynchronous operation and lets the VDA

handle other incoming requests.

3.2. View Definition

During this process the user select the databases, tables

and attributes to retrieve as well as sets the restrictions on

each attribute. The user can also define which relation

attributes are most important to her and select to

specifically monitor those attributes for changes. View

definition is assisted by retrieving the selected databases’

metadata from the VDA locally to each client side

component.

We deal with view definitions consisting of project,

select and join operators. Project-Select-Join (PSJ) views

are most common and, to a large extend, cover the

requirements of the problem investigated [11]. We, thus,

categorize views into either simple or complex. A simple

view can be broken down to a succession of project-

select-join operations and can be materialized by a single

View Evaluator Agents (VEA). Complex views consist of

at least two simple views combined with some operator

such as “Union” or “Minus”. Views can also be defined

to extract data from a single database (single views) or be

created over multiple databases (multi-views).

Suppose that the doctor in our example has to leave for

a conference in Athens but needs to keep track of her

patients while away. She selects to define a view (e.g.

using the Applet-Based Client from her laptop) before

leaving. This complex, multi-view expressed in an SQL-

like language can be:

DEFINE SHAREABLE ‘ Doctor-View ’ AAS
SELECT Ni_Hospital.PatientID, Ni_Hospital.Pressure,
 DoctorDB.Diagnosis, PharamacyDB.Available
FROM Ni_Hospital, DoctorDB, PharamacyDB
WHERE DoctorDB.LastVisit > 1/1/2003
UNION
SELECT Pa_Hospital.PatientID, Pa_Hospital.Pressure,
 DoctorDB.Diagnosis, PharamacyDB.Available
FROM Pa_Hospital, DoctorDB, PharamacyDB
WHERE DoctorDB.LastVisit > 1/1/2003
MONITOR Ni_Hospital.Temperature,
 Pa_Hospital.Pressure Every 5 minutes

Note the MONITOR line that defines the set of attributes

to be monitored as well as the time interval between re-

querying the sources for changes on these attributes.

3.3. Materialization Scheme

As soon as a view is defined, it is sent to the VDA.

Before it reaches the VDA, the view definition needs to

be pre-processed into a number of simple view fragments,

which also form the view definition structure. This

functionality is rather simple and it is provided by the

client side component. This is feasible since, as

mentioned in §3.2, all required metadata is downloaded

locally. This relieves the VDA from having to structure

each view definition. In our previous example the two

‘SELECT-FROM-WHERE’ clauses before and after

‘UNION’ represent two simple view definitions

connected with the ‘UNION’ operator.

The VDA creates a View Agent (VA) and passes it the

structured view definition. For each simple view in the

view definition, the VA will create a Data Holder (DH) to

administer this view. Each DH will create a VEA and

provide a materialization plan. This is achieved using a

Query Builder that can be programmed to optimize a

query plan given database-related information which can

be obtained from the View Dictionary as described in

§2.1. ViSMA Query Builder currently creates a plan that

attempts to minimize the size of data moved from one

node to another by only carrying data that is absolutely

necessary to the materialization process.

Proceedings of the 14th International Workshop on Database and Expert Systems Applications (DEXA’03)
1529-4188/03 $17.00 © 2003 IEEE

The final DH structure is tree-like, combining at each

level a number of DH data. As a more generic example,

consider the following complex query in which more than

just two simple views are combined (Q1, Q2 and Q3 are

simple view definitions.)

Q = (Q1 UNION Q2) MINUS Q3

Each of the query definitions is passed to a DH. Figure

3 shows how the DHs are structured within a View Agent

(VA). Discontinues lines imply flow of data whereas

continues lines imply function executed between this DH

data and the data of the related DH.

Each of the simple queries is materialized by a VEA

that travels to each datasource retrieving the requested

data that is sent to the DH at completion. Figure 4 shows

how a simple query (such as Q1, Q2 or Q3), referencing

three distinct databases, is materialized. In our example

view definition, this plan reflects the materialization of

any one of the two ‘SELECT-FROM-WHERE’ clauses.

Eventually each DH will receive a materialized view

fragment.

View Agent

DH (Q2)

DH (Q3)

DH (Q1Q2)MINUS

UNION

DH (Q1)

Figure 3: View Structure Based on Data Holders

Each DH will also send the necessary Monitors to any

database that includes table attributes that the user

selected for monitoring. For the example above, Monitor

Agents need to be sent to ‘Ni_Hospital’ and

‘Pa_Hospital’, querying the ‘Temperature’ and ‘Pressure’

attributes respectively every 5 minutes as defined.

Client

Assistant

Step 2

Step 4

Step 1 View

Dictionary

View Agent

Data

Holders

Assistant

Assistant

View Evaluator Agent

View

Step 3

View Info

An assumption is made here concerning the size of the

materialized views: VAs are different from data

warehouses in that they maintain limited size data from

multiple sources. In a way, VAs form a distributed data

warehouse that can relocate its pieces to better serve its

clients. The size limitation is a logical assumption based

on the fact that views created are mostly personalized and

can be retrieved by many users who share the same

interests. Currently we are working on view storing

alternatives (such as using XML files and communicate

them via standard HTTP) to enable larger size views to be

stored and relocated dynamically.

3.4. Maintaining Views

As mentioned previously, Monitor Agents are used to

provide updates for changes occurring at the datasources.

Monitors reside at the database, connect and periodically

re-query the database to retrieves the values of the

attributes they monitor. A comparison is made between

the last and the current results and the view difference (

View) is created. Only changes are sent to the DH, which

can select to delete removed rows or resend a View

Evaluator to rematerialize the view. Note that a DH may

receive updates from Monitors located at different data

sources (Fig. 5).

The algorithm used for this implementation is

recomputational. In this scheme, we extend and adapt the

Strobe Algorithm [11] to suit the needs of a mobile

environment and mobile agent technology per se.

Client

Assistant

View

Dictionary

View Agent

Data

Holder(s)

Assistant

Assistant

U
pd

2
Upd1

Step 1

Step 1
Step 2

Step 2

Monitor Agent 1

Monitor Agent 2

Figure 5: Datasource Monitoring

3. 5. View Data Retrieval

3.5.1. Shareable Views. Views created can be shared

among all users of the system. A user may select to get

any specific view’s latest data by requesting it from the

corresponding VA. In our example, the head-doctor may

want to check on the status of the patients of the departing

doctor. Retrieving a VAs data is done by requesting it

either directly (ViSMA Agent client) or indirectly

through the VDA (e.g. when using the Applet Client or Figure 4: Simple View Materialization

Proceedings of the 14th International Workshop on Database and Expert Systems Applications (DEXA’03)
1529-4188/03 $17.00 © 2003 IEEE

the Servlet Engine.) The result returned is presented to

the user again depending on the client type that was used

for the request. For example, the reply to a Servlet Engine

request is in pure HTML.

3.5.2. Personalized View Creation. Users may be

interested in a specific subset of some view. In this case,

the system allows the creation of a personalized subview,

which cannot be shared. In our previous example suppose

that the doctor’s assistant wants to define a view on the

patients, whose pressure rises over 120/80, viewing the

results from his PDA. He will use the Servlet Engine

client to define the sub-view:

DEFINE PERSONALISED ‘Assistant-View’ AS

SELECT PatientID, Pressure
FROM View ‘Doctor-View’
WHERE Pressure > 120/80

The query is sent to the VDA (Fig. 6), which creates

an Observer that may move close to the VA to initially

query it but will typically follow its creator to reduce

delays and remotely re-query the VA for updates.

Client

Step 2

Step 1 View

Dictionary

View Agent

Query

Observer
Step 3

Step 4

Step 5

3.6. View Mobility

Since a VA is mobile it can select to move closer to

the group of users who use it most frequently. In our

example, suppose that the doctor has connected again

upon arrival to the conference. The VA either by

detecting the new location or by noticing increased delays

moves from Nicosia to Athens, at the local network (or

the doctor’s local machine), making request noticeably

faster and reducing network traffic.

Within the ViSMA system we have incorporated a

middleware subsystem called Tracker [2] that is used for

efficient agent location tracking and for assessing the

movement decisions.

3.7. View Deletion

When a user decides to delete a view she created, she

sends a message to the VDA.

The VDA will notify the corresponding VA, which

will hierarchically notify its DHs (Fig 7). Users may

select to keep the last version within the Observer,

however, generally views are considered invalid

(outdated) if not deleted or updated for a specified period

of time which is customizable and usually dependent on

the type of the application for which the views are used.

4. Additional Features and Previous Work

 Previous systems DVS [1] and VG [3] provide only

basic ideas and have limited functionality. ViSMA is a

full-fledged system that provides complete functionality

by covering extensively all stages of the view

manipulation processes. In addition, it follows a new

materialization and maintenance philosophy based on the

Data Holders as described in the system services section.

Data Holders, being mobile themselves allow for the

View Agent to relocate any one of the view fragments

independently.

Client

Assistant

View

Dictionary

View Agent

Data

Holder(s)

Assistant

Assistant

X

X

Step 1

X

Monitor Agent 1

Monitor Agent 2

Step 2

Step 3

Step 3

Remove

Another new feature is system extendibility, which can

be visualized in two directions: Client extendibility and

Functionality extendibility. Client extendibility can be

achieved since ViSMA architecture allows additional

types of users to have access to the View Dictionary via

the request interface. The user side components need only

decide how the data received will be handled (e.g.,

filtering the result to WML for a WAP-enabled device).

Functional extendibility is provided for developers who

may extend current agents to execute specific, system-

defined functions viewing ViSMA as an Application

Programmer Interface (API). For example developers

may supply the Query Builder with additional query plan

optimizations or recode the Monitor’s update propagation

method. Additionally we envision a Multi-ViSMA system,

which may consist of collection of distributed View

Dictionaries, each servicing a set of clients and databases.

ViSMA Dictionaries may create ad-hoc networks and

communicate in a P2P manner thus interconnecting

different organizations.

View mobility is enhanced: Observers can monitor the

movement of VAs and clients using Tracker and regulate

their own location to minimize communicational costs.

Figure 6: Personalized View Creation
Figure 7: View Deletion

Proceedings of the 14th International Workshop on Database and Expert Systems Applications (DEXA’03)
1529-4188/03 $17.00 © 2003 IEEE

We also incorporate ideas from [8] to further support

view customization: During view definition, the user may

explicitly select which columns to monitor for changes

and at what re-querying frequency

Finally, VAs support querying over their data thus

allowing for personalized sub-view creation and update

transparently with respect to the original data sources. We

also note that, with this system, non Java-enabled clients

are supported while providing a user-friendly wizard-like

GUI to assist view and sub-view definition which also

allows for individual attribute monitoring settings.

5. Conclusion and Future Work

Recently, data access and retrieval have presented a

number of challenges mainly due to the vastness of

available data, the particularities of mobile and wireless

computing and the need for personalization. In this work

we present ViSMA, a functional tool that aims at assisting

the dynamic definition, materialization and maintenance

of web views. The primary design goal is to support

mobile and wireless clients and be adaptable to the

various types of user needs depending on the device

capabilities and connectivity conditions. We propose a

mobile-agent based architecture on which the system is

build and describe how mobile agents can be dynamically

deployed in providing a number of view manipulation

services which are enhanced by view mobility as well as

structured storage of views based on the Data Holder

concept. We also highlight the fact that the system can be

extended to accept new types of clients and may adjust its

agent's functions to implement designer specific strategies

by using PDAs and laptops.

Our first milestone in the development of ViSMA was

to produce a functional prototype. As future work we

intend to conduct an evaluation of the performance trade-

offs concerning update efficiency versus query and

retrieval of view fragments held by multiple DHs. Then

we will work on enhancing the materialization plan at the

Query Builders as well as improve our update

propagation procedure with an incremental updating

strategy. Finally we shall deal with system scalability

issues with respect to the type of client and the type of

query, which are a function of the view storage scheme

and the Mobile Agent platform capabilities.

7. References

[1] C. Spyrou, G. Samaras, E. Pitoura, S. Papastavrou,

and P.K. Chrysanthis: The Dynamic View System (DVS):

Mobile Agents to Support Web Views. The 17th Int’l

Conf. on Data Engineering, Mar. 2001.

[2] G. Samaras, C. Spyrou, E. Pitoura, M. Dikaiakos:

Tracker: A Universal Location Management System for

Mobile Agents, European Wireless, Feb 2002.

[3] G. Samaras, C. Spyrou, E. Pitoura: View Generator

(VG): A Mobile Agent Based System for the Creation

and Maintenance of Web Views. 7th IEEE Symp. on

Computers and Communications, 2002.

[4] N. Roussopoulos Materialized Views and Data

Warehouses: The 4th KRDN Workshop Athens, Greece,

Aug.1997.

[5] O. Wolfson, P. Sistla, S. Dao, K. Narayanan, R. Raj:

View Maintenance in Mobile Computing, 1995.

[6] Recursion Software Inc, Voyager ORB. At

www.recursionsw.com/products/voyager/

[7] S. Papastavrou, G. Samaras and E. Pitoura: Mobile

Agents for World Wide Web Distributed Database

Access, IEEE TKDE, 2000.

[8] S. Weissman Lauzac, P. K. Chrysanthis. Personalized

Information Gathering for Mobile Database Clients: The

ACM Symp. on Applied Computing. Feb 2002.

[9] XXL (eXtensible and fleXible Library), Database

Research Group, Univ. of Marburg, Germany. At

www.dbs.mathematik.uni-

marburg.de/research/projects/xxl

[10] Y. Zhuge, H. Garcia-Molina, J. Hammer and J.

Widom. View Maintenance in a Warehousing

Environment. In the ACM SIGMOD Conf., 1995.

[11] Y. Zhuge, H. Garcia-Molina, J.L. Wiener: The

Strobe Algorithms for Multi-Source Warehouse

Consistency. The 4th International Conference on Parallel

and Distributed Information Systems, 1996.

Proceedings of the 14th International Workshop on Database and Expert Systems Applications (DEXA’03)
1529-4188/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

