
IPMicra: An IP-address based Location Aware
Distributed Web Crawler

Odysseas Papapetrou and George Samaras
Department of Computer Science, University of Cyprus

75 Kallipoleos str., P.O. Box 20537, Nicosia, Cyprus
{cspapap,cssamara}@cs.ucy.ac.cy

Tel.: +35722892700
Fax: +35722892701

Abstract— Distributed crawling is able to overcome important
limitations of the traditional single-sourced web crawling systems.
However, the optimal benefit of distributed crawling is usually
limited to the sites hosting the crawlers, the rest of the URLs are
by large randomly distributed to the various crawlers. In this
work, we propose a location-aware method, called IPMicra, that
utilizes an IP address hierarchy, and allows crawling of links in a
near optimal location aware manner. Our proposal outperforms
earlier distributed crawling schemes by requiring one order of
magnitude less time for crawling of the same set of sites.

KEYWORDS: distributed crawling, web crawling, location
aware crawling

I. I NTRODUCTION

The challenging task of indexing the web (usually referred
as web-crawling) has been addressed in many research publi-
cations. However, due to the current size, increasing rate, and
high change frequency of the web, no web crawling schema
is able to pace with the web. While current web crawlers
managed to index more than 3 billion documents [2], it is
estimated that the maximum web coverage of each search
engine is around 16% of the estimated web size [3].

Distributed crawling [5], [6], [4], [1] was proposed to
improve the situation. However, all the previous publications
were not taking full advantage of the distributed nature of
the application. While some of the previously suggested sys-
tems were fully distributed over the Internet (many different
locations), each web document was not necessarily crawled
from the most near crawler but from a randomly selected
crawler. While the distribution of the crawling function was
efficiently reducing the network bottleneck from the search
engine’s site and importantly improving the quality of the
results, the previous proposals were not at all optimized.

In this work, we suggest IPMicra that facilitates crawling
of each URL from the most near crawler (nearness in terms
of network latency) without creating excessive load to the
Internet infrastructure. We use data from the four Regional
Internet Registries (RIRs) to build a hierarchical clustering of
IP addresses, which assists us to perform an efficient URL
delegation to the migrating crawlers. In addition to location
aware crawling, IPMicra detects bottlenecks and provides load
balancing in URL delegation and calibration of the existing
delegations. The infrastructure runs with negligible network
and processing overhead and has very promising results.

This short introduction is followed by a brief discussion on
location aware web crawling. Then, we present and evaluate
the IPMicra system and describe its advantages, compared
to earlier work (centralized and distributed crawlers). Finally,
section VI presents our conclusions.

II. L OCATION AWARE WEB CRAWLING

The high distribution of the migrating crawlers in several
earlier distributed web crawlers favors a location aware delega-
tion of the URLs to the crawlers.Location aware web crawling
is distributed web crawling enhanced with a mechanism to
facilitate the delegation of the web pages to the distributed
crawlers so that each page is crawled from the nearest crawler
(i.e. the crawler that would download the page the fastest).
Nearnessand locality are always in terms of network distance
(latency) and not in terms of physical (geographical) distance.
The distinction between the two types of distances (network
and geographical distance) is important, since the two types
of distances are not always analogous.

Location aware web crawling can make better use of
network resources, the lack of them being the primary bot-
tleneck in today’s search engines. Modern search engines,
instead of trying to reduce the network latency for each page,
facilitate multiple crawling threads (issue many concurrent
GET requests).However,this approach is not perfect, since
it does not actually avoid the network bottleneck. Instead,
location aware web crawling makes downloading of each web
document faster (with multiple threads or not). The network
resources in location aware crawling are being fully-facilitated.

In order to find the nearest crawler to a web server we
useprobing. Experiments showed that the traditional ICMP-
ping tool, or the time that takes for aHTTP/HEADrequest to
be completed, are very suitable for probing. In the majority
of our experiments (over 90%), the crawler with the smallest
probing time was the one that could download the web page
the fastest. Furthermore, in the rest of the cases, the sub-
optimal delegation proposed from the probing function was
not far away of the optimal one. Thus, the migrating crawler
having the smallest probing result to a web server is possibly
the crawler most near to that web server.

Evaluating location aware web crawling, and comparing it
with distributed location unaware web crawling was actually



simple. A distributed web crawling schema, i.e., UCYMi-
cra [6], [5], was enhanced and, via probing, the URLs were
optimally delegated to the available migrating crawlers. More
specifically, each URL was probed from all the crawlers,
and then delegated to thenearestone. Location aware web
crawling outperformed its opponent (the original UCYMicra),
which delegated the various URL randomly, by requiringone
order of magnitude less time(1/10th) to download the same set
of pages, with the same set of migrating crawlers and under
approximately the same network load.

The data collected from this experiment also showed that
there exist logical neighborhoods in the Internet, which will
be most useful if we are able to discover and use for the
delegation of the URLs to the crawler.

III. T HE IPMICRA SYSTEM

The initial extension for location aware web crawling had
some impressive results. However, the extension could not
easily scale, since it demanded extensive probing (each site
should be probed from all the crawlers). Thus, we now
propose IPMicra, a web crawling schema designed especially
to minimize the need for probing and at the same time perform
quality location-aware delegation of URLs to the available
crawlers. IPMicra is powered from data collected from the
Regional Internet Registries for performing the location aware
delegation. The new system is also built over the same
distributed web crawling infrastructure, UCYMicra [5], [6].
Thus, before describing the IPMicra approach in more detail,
it is important to give a small introduction for UCYMicra and
Regional Internet Registries (RIRs).

A. UCYMicra

UCYMicra [5], [6] was recently proposed as an alternative
to distributed web crawling. The authors, realizing the limi-
tations of the centralized web crawling systems and several
other distributed crawling systems, designed and developed
an efficient distributed web crawling infrastructure, powered
from mobile agents. The web crawlers were constructed as
mobile agents, and dispatched to collaborating organizations
and web servers, where they performeddownloading of web
documents, processing and extraction of keywords, and, finally,
compression and transmissionback to the central search
engine. Then, the so-called migrating crawlers remained in
the remote systems and performed constant monitoring of all
the web documents assigned to them for changes.

More specifically, the original UCYMicra consists of three
subsystems, (a) the Coordinator subsystem, (b) the Mobile
Agents subsystem, and (c) a public Search Engine that ex-
ecutes user queries on the database maintained by the Coor-
dinator subsystem.

The Coordinator subsystem resides at the Search Engine
site and is responsible for administering the Mobile Agents
subsystem (create, monitor, kill a migrating crawler), which is
responsible for the crawling task. Furthermore, the coordinator
is responsible for maintaining the search database with the
crawling results that it gets from the migrating crawlers.

Fig. 1. UCYMicra basic components

The Mobile Agents subsystem is divided into two cate-
gories of mobile agents; the Migrating Crawlers (or Mobile
Crawlers) and the Data Carries. The former are responsible
for on-site crawling and monitoring of remote Web servers.
Furthermore, they process the crawled pages, and send the
results back to the coordinator subsystem for integration in
the search engine’s database. The latter are responsible for
transferring the processed and compressed information from
the Migrating Crawlers back to the Coordinator subsystem.
Figure 1 illustrates the high-level architecture of UCYMicra.

The system involves the following tasks:

1) The user registers the machine that will host the mi-
grating crawler using a web interface in the coordinator
subsystem

2) A migrating crawler is then created and moved to
the newly-registered system. Upon arrival, the crawler
configures itself.

3) The crawler waits until its processing time arrives (the
time span that the crawler is allowed to work). When
the time comes, the crawler performs an initial crawling
of the assigned web-pages.

4) The crawler processes the crawled web-pages and splits
the processed results to packages. It compresses the
packages and creates a data carrier for each package,
to send it to the coordinator.

5) The data carrier transport the package back to the
coordinator, where it is received from the coordinator,
uncompressed, and finally integrated in the search en-
gine’s database

6) The crawler remains in the remote host and monitors
the assigned web-pages/web-servers for changes. Upon
detection of an update in the monitored web-pages, the
crawler informs the coordinator for the update with the
usage of a data carrier. Respecting its configuration, the
crawler works only in the predefined time-spans.

The UCYMicra paradigm was easily acceptable from the
users, and was appreciated and tempting to the web server ad-
ministrators, since it could offer a quality-controlled crawling
service without security risks (they could easily and efficiently
set security and resource usage constraints). Actually, the
use of UCYMicra was twofold. Powered from the portability



of the mobile agents’ code, the UCYMicra crawlers could
easily be deployed and remotely administered in an arbitrary
number of collaborating machines and perform distributed
crawling in machines’idle time (similar to the seti@home
approach [7]). Further on, the crawlers could be deployed
in high-performance dedicated machines controlled from the
search engine company, for performing efficient distributed
crawling with very little communication overhead.

Due to its distribution, UCYMicra was able to outperform
other centralized web crawling schemes, by requiring at least
one order of magnitude less time for crawling the same set of
web pages. The processing and compression of the documents
to the remote sites was also important, since this reduced
the data transmitted through Internet back to the search
engine site, and also eliminated the processing and network
bottlenecks. Furthermore, UCYMicra not only respected the
collaborating hosts (by working only when the resources were
unused) but also offered quality crawling - almost likelive
update- to the servers hosted in the collaborating companies
(a service usually purchased from the search engines).

B. Regional Internet Registries

Regional Internet Registries (RIRs for short) are non-profit
organizations that are delegated the task of handling IP ad-
dresses to the clients. Currently, there are four regional Internet
Registries active in the world, APNIC, ARIN, LACNIC and
RIPE.

Despite the anarchy currently experienced in the Internet,
the four Regional Internet Registries manage to keep an
updated database with IP addresses registered in their area. All
the sub-networks (i.e. the companies’ and the universities’ sub-
networks) are registered in their regional registries (through
their Local Internet Registries) with their IP address ranges.
Later on, if the subnet administrator wants to register another
block of addresses, again the addresses are expected to be
registered under the same organization name in the same RIR.

With the RIRs functionality, a hierarchy of IP ranges has
been created in the Internet. We can consider the IP range
hierarchy starting from the complete range of IP addresses
(from 0.0.0.0 to 255.255.255.255). Then, the IP addresses are
delegated to RIRs in large address blocks, and finally, they are
sub-divided to LIRs (Local Internet Registries), where then are
finally sub-divided to their customers-end users.

C. An outline of IPMicra

The basic idea behind IPMicra is to perform delegation
of each URL to the nearest available migrating crawler by
employing data collected from the Regional Internet Registries
and a very limited number of probes. The IPMicra system is
architecturally divided in the same three subsystems that were
introduced in the original UCYMicra, and described in section
(III-A): (a) the public search engine, (b) the coordinator
subsystem, and (c) the mobile agents subsystem (consisted of
the migrating crawlers and the data carriers). However, only
the public search engine remains unchanged. The coordinator
subsystem is enhanced with the functionality of building the
IP hierarchy tree (which will be described in the following

section) and coordinating the delegation of the subnets. The
migrating crawlers are also enhanced with the functionality
of probing the sites and reporting the results back to the
coordinator.

IPMicra keeps all the functionalities of UCYMicra. More
exactly, downloading, processing, and compression of data are
all performed in a distributed manner, this way alleviating
any processing bottleneck from the search engine. Only the
changes, compressed and processed, are transmitted to the
search engine’s site, thus, alleviating the network bottleneck.
Furthermore, as in UCYMicra, the system involves parking of
the crawlers in the host systems, and distributed monitoring
of the web-sites for detection of updates. In addition, IPMicra
now employs an IP address hierarchy, in order to efficiently
assign IP address ranges to the ‘most near’ available crawler,
which will be able to crawl it with the least network latency.

Our evaluation (section IV) revealed that the IPMicra system
not only outperforms traditional crawling, but, most impor-
tantly, significantly improves the performance of distributed
crawling (namely UCYMicra), without adding any significant
overhead. In fact, the added overhead due to the probing
function is negligible.

D. The IP address hierarchy and crawlers placement

The basic idea is the organizing of the IP addresses, and
subsequently the URLs, in a hierarchical fashion. However,
since the introduction of classless IP addresses, we cannot
make any assumptions about thenearnessof two subsequent
IP’s (IP address 197.0.0.7 can reside in N.Y., and IP address
197.0.0.8 in Germany, with important network distance be-
tween). Thus, we use theWHOISdata collected from the RIRs
to build and maintain a hierarchy with all the IP ranges (IP
subnets) currently assigned to organizations (e.g., see figure 2).
The data, apart from the IP subnets, contains the company that
registers each subnet. Our experience shows that the expected
maximum height of our hierarchy is 8. The required time for
building the hierarchy is small, and the hierarchy can be easily
loaded in main memory in any average system. While the IP
addresses hierarchy does not remain constant over time, we
found out that it is sufficient to rebuild it every three months,
and easy populate it with the old hierarchy’s data.

Once the IP hierarchy is built, the migrating crawlers are
sent to affiliate organizations (in real life, these can be normal
users or web-hosting organizations). Since the IP address of
the machine that will host the crawler is known, we can
immediately assign that subnet to the new crawler. In this way
the various crawlers populate the hierarchy. The hierarchy can
now be used to efficiently find the nearest crawler for every
new URL, utilizing only a small number of probes. We stop
probing as soon as we find a crawler that satisfies a threshold,
called probing threshold. Probing threshold is the maximum
acceptable probing time from a crawler to a page and it is set
by the search engine’s administrator depending on the required
system accuracy. During our experiments (see section IV) we
found a probing threshold set to 50msec to give a good ratio
of quality for number of probes.



Fig. 2. A sample IP hierarchy. Subnet 11 and subnet 13 belong to company
1 and company 2 respectively. The mentioned hierarchy can be built from the
bulk WHOISinformation from the RIRs

E. The URL delegation procedure

The coordinator subsystem takes over the delegation of the
URLs to the available crawlers. Based on the assumption
that the sub-networks belonging to the same company or
organization are logically (in terms of network distance) in
the same area, we use the organization’s name to delegate the
different domains to the migrating crawlers. In fact, instead
of delegating URLs to the distributed crawlers, we delegate
subnets - IP ranges. We first find thesmallestsubnet from the
IP hierarchy that includes the IP of the new URL, and check if
that subnet is already delegated to a crawler. If so, the URL is
delegated to this migrating crawler. If not, we check whether
there is another subnet that belongs to the same company and
is already delegated to a migrating crawler (or more). If such
a subnet exists (and the probing result of the crawler having
that subnet is smaller than the threshold), the new URL, and
subsequently, the owning subnet, is delegated to this crawler.
If there are subnets of the same company delegated to multiple
crawlers then the new subnet is probed from these crawlers
and delegated to the fastest. In fact, we stop as soon as we
find a crawler that satisfies the probing threshold.

Only if this search is unsuccessful, we probe the subnet
with the migrating crawlers, in order to find the best one to
take it over. We navigate the IP-address hierarchy bottom up,
each time trying to find the most suitable crawler to take the
subnet. We first discover the parent subnet and find all the
subnets included in the parent subnet. Then, for all the sibling
subnets that are already delegated, the coordinator sequentially
asks their migrating crawlers, and the migrating crawlers of
their children subnets to probe the target subnet, and if any of
them has probing time less than a specific threshold (probing
threshold), the target subnet is delegated to that crawler. If no
probing satisfies the threshold, the search continues to higher
levels of the subnets tree. In the rare case that none of the
crawlers satisfies the probing threshold, the subnet is delegated
to the crawler with the lower probing result.

Probing of sites, as with any activity in the migrating
crawlers, is always performed during the timespans that the
migrating crawlers are allowed to work, when the host system
and LAN are of low or no use (this is the only time of
the day that the coordinator communicates with the migrating
crawlers). This has the extra advantage that each site is probed
from each crawler near the time that it would be actually

crawled later if it was delegated in that crawler. This kind
of probing takes the expected workload of the server to be
crawled in the future crawling time under consideration, thus
avoids overloading of the server in peak hours.

F. Dynamic calibration of URLs and load balancing

Internet is vastly changing, in structure and contents. Under-
lying connectivity between the servers, and routing tables of
the intermediary routers change, invalidating past IPMicra del-
egations. Thus, the IPMicra algorithm must perform dynamic
calibration of the delegations so that they remain optimal.
Further on, the algorithm must be able to avoid bottleneck
creation to crawlers that are in over-populated (from web
documents) areas, and/or perform load balancing between the
available crawlers.

Dynamic calibration: Our algorithm performs dynamic
calibration of the URLs. During time, the Internet infras-
tructure changes, new nodes are added, routing tables in the
intermediary routers change. For these reasons, we perform
some additional counts during the crawling function, which
efficiently detect changes that should cause re-delegation of
some subnets. More specifically, each migrating crawler in
the IPMicra extension counts the required time for every
HTTP/GETrequest it issues for every web page. The new time
is compared with the previousHTTP/GET times for the same
web page, stored locally in the crawlers’ memory. If the new
time is sufficiently larger (a threshold defined from the search
engine administrator) than the time demanded for the previous
downloads of the same page, and if this repeats for more than
one time continuously, then the subnet is re-delegated, so that
a more suitable crawler is found. The same happens with every
HTTP/HEADcommand, which is often used from our crawlers
in order to discover whether a particular page has changed.

Incorporating this extra task during web crawling, we
manage to keep our delegations up to date and to efficiently
detect any negative changes in the Internet infrastructure with
respect to the existing delegations. Applying the dynamic
calibration algorithm does not introduce any more load in the
Internet infrastructure, since we only use information already
available, produced from the standard commands issued for the
web crawling task. Furthermore, the extra computational load
added from the dynamic calibration algorithm is negligible.

Load balancing: Load balancing is also employed in the al-
gorithm, in order to avoid overloading of certain web crawlers
(in crowded areas), and at the same time perform near-optimal
delegations. Each crawler has a maximum capacity, the size of
the assigned web-pages that the crawler has to check each day.
In the case where one crawler is found to be the best for one
new subnet, but the inclusion of this subnet to the crawler’s
workload violates the crawler’s capacity, then measures are
taken toward one of the following: (a) either the overloaded
crawler takes the new subnet and releases one of the old ones,
which is then taken over from some other crawler, or (b) the
new subnet is delegated to the second-best crawler.

We looked into several approaches to ensure that our
suggestion is scalable. We were able to find many suitable
approaches for this task. The problem could be translated



and solved as a standard linear programming problem, or, we
could follow a test-all-cases approach, testing all the possible
combinations in order to find the best. Furthermore, we could
use a simpler heuristic that finds the best URL to re-delegate
by comparing the next-best time for all the URLs in the
overloaded crawler. All the approaches target in minimizing
the global cost, which is, in our case, defined as the sum of
the time that takes each of the crawler to download the web
pages assigned to it

∑
∀i,j Pij , where i=page, j=crawler, and

Pij =

 time required to download i from j, if i delegated
to j

0, otherwise
For the purpose of this work, we developed another heuristic
based on the variance of the logical distance of each web-page
(identified from the probing result) from all the migrating
crawlers that probed the web page. Intuitively, small probing
time variance implies that most of the probed crawlers have
similar probing results. Thus, we expect to be easily able
to find a near optimal crawler to take over a page. The
execution of the load balancing algorithm is taking place
in the coordinator. The coordinator uses the stored (in the
database) probing results for all the subnets to select the
subnet that can be removed from the overloaded crawler.
This is the subnet with the smallest variance in its probing
results. The crawler takes this subnet and checks if the
next-best crawler for it (if any), according to the probing
results, is available and can accept the subnet (i.e. will not get
overloaded). If so, the subnet is re-delegated to this crawler.
If not, we retry the approach with the next best subnet, until
we find a subnet that can be efficiently delegated to a new
crawler.

We found this heuristic to perform well. We selected this
heuristic instead of a linear programming (which would be
more effective) and the test-all-cases solution strictly because
of the ease in implementation. Furthermore, the heuristic was
selected over the heuristic based on next-best time, because
it was expected to scale more gracefully, and function better
over time. Our tests revealed that the heuristic was able to
make the best load balancing decision in more than the 2/3
of the cases. Furthermore, in all the rest cases, the heuristic
was able to find an acceptable solution. Unfortunately, due to
space limitations we cannot present analytical results of our
experiment here. While satisfied with this heuristic, part of our
ongoing work is to apply and evaluate other load balancing
algorithms.

IV. PERFORMANCE AND EVALUATION

Evaluating IPMicra, we should investigate four different as-
pects: (a) the overall time for performing the crawling function
in IPMicra, compared with other distributed crawlers, (b) the
percentage of the optimal delegations proposed from IPMicra
(with and without load-balancing), (c) the time difference
for crawling of the sub-optimal delegations, proposed from
IPMicra, compared to the optimal ones, and, (d) the required
probes for each delegation. We also experiment with different
probing thresholds in order to find the one that would offer
significant performance with low probing requirements.

We evaluated IPMicra with 2 different setups, with 4 and
12 migrating crawlers (the experiments were repeated multiple
times for each setup) hosted from affiliated organizations
world-wide, which were assigned a set of 1000 URLs to crawl.
In each setup, the optimal delegation was also calculated (by
facilitating a brute-force algorithm that is not described here).
Crawling was performed with IPMicra and with location-
unaware distributed web crawling (represented from a slightly
modified - for matters of easier experimental setups - ver-
sion of UCYMicra). In both the setups, IPMicra was able
to perform a near-to-optimal location-aware assignment of
URLs to the available crawlers (more than 75%), this way
outperforming its opponent, UCYMicra, and requiring one
order of magnitute less time(near 1/10th of time)to perform
the crawling function.

We also experimented by varying the probing threshold (the
minimum probing time for stopping the probing algorithm),
and found out that a threshold set to 50msec would have
the best quality:#probes ratio. Paying the cost of significantly
less probes, when the probing threshold was set to 50msec,
IPMicra was not able to perform the optimal location aware
delegation, but the proposed delegation was very near to the
optimal (more than 75% of the URLs were delegated to
the nearest web crawler). Furthermore, all the sub-optimal
delegations were practically very near to the optimal ones.
The overhead from the IPMicra algorithm was less than 3
inexpensive probes per URL for our setup. Actually, as the
IPMicra algorithm was getting calibrated with new data, we
required less probes for every new URL. For example, while
the average number of probes required for the delegation of all
the URLs was 2.99 probes per URL, the average number of
probes for delegation of the last 50 URLs (after the hierarchy
was calibrated from the previous delegations) was 2.66 probes
per URL.

V. A DVANTAGES OF THE IPMICRA SYSTEM

IPMicra has several advantages inherited from the mobile
agents model, and its predecessor, UCYMicra. Furthermore,
it handles load balancing and URL delegation better and in
a more efficient way. More exactly, the new system has the
following advantages:

1) Location aware crawling. It delegates the web sites to
near migrating crawlers in order to take advantage of
the lower network latency for faster crawling

2) IPMicra makes better use of the available bandwidth.
While location unaware web crawlers (distributed or
not) were trying to get over the network latency and in-
crease the crawling rate by employing multiple crawling
threads, the available bandwidth was still fully facilitated
and was always a bottleneck. Location aware web crawl-
ing needs less time to download a web document and
releases network resources faster. Just by re-arranging
the delegation of the URLs to the available web crawlers,
we can complete the crawling function more efficient.
Therefore, we expect to avoid the network bottleneck
during crawling.



3) Load balancing. It uses an efficient load balanc-
ing scheme to alleviate bottlenecks in the migrating
crawlers.

4) IPMicra eliminates the need of the traditional centralized
web-crawlers, since the new crawling paradigm can
follow newly found links and performs efficient load
balancing.

5) IPMicra eliminates the enormous processing bottleneck
from the search engine’s site, by delegating the process-
ing task to the migrating crawlers.

6) IPMicra performs remote processing and compression
(to the migrating crawlers) prior transmitting the results
back to the search engine. The size of the transfered data
back to the central point - the search engine - is reduced
to an order of magnitude. More accurately, we transmit
less than 1/20thof the size of the crawled data, without
loosing any search-useful information.

7) Useless conditional GETs(If-Modified-Since
headers) andHEADrequests do not any more facilitate
network resources from the search engine’s site, but
are executed distributed. Thus, they do not contribute
to the creation of a network or processing bottleneck in
the search engine site.

8) Keeps up with document changes, since it can inexpen-
sively monitor for changes.

9) Is upgradeable at real time, since the crawlers can
perform update of their own code.

10) Is promising and acceptable from the users, due to the
security constraints that can be set to the migrating
crawlers, and at the same time, it can offer a fully config-
urable crawling service for the web server administrators
(similar services are currently sold from commercial
search engines).

VI. CONCLUSIONS

In this work, we proposed IPMicra, an extension of UCYM-
icra, that allows, based on the notion of ‘nearness’, crawling of
links in a near optimal location aware manner. The motivating
power behind IPMicra is an IP address hierarchy tree, which is
build using information from the Regional Internet Registries.
This hierarchy is used to delegate the web sites to near
migrating crawlers in order to take advantage of the lower
network latency for faster crawling. To our knowledge IPMicra
is the first location aware distributed web crawler, and can
offer an efficient and generic solution to todays web indexing
problem. We view this work as an important step toward a
truly distributed and scalable web crawler, that will be able to
catch up to the expanding and rapidly changing web.

The location aware infrastructure developed in this work
can be applied (as a framework) in any (fully or partially)
distributed web crawler. The framework can even be applied
in existing commercial approaches, like the Google Search
Appliance or Grub. Furthermore, it can facilitate optimizations
for distributed applications in the Internet in general. For
example, this framework can efficiently enhance the load
balancing schemes used from content delivery networks, such
as Akamai.

REFERENCES

[1] C. Mic Bowman, Peter B. Danzig, Darren R. Hardy, Udi Manber, and
Michael F. Schwartz. The Harvest information discovery and access
system.Computer Networks and ISDN Systems, 28(1–2):119–125, 1995.

[2] Google Inc. Google, September 2003. http://www.google.com/.
[3] S. Lawrence and C. Lee Giles. Accessibility of information on the web.

Nature, 400(6740):107–109, July 1999.
[4] LookSmart Ltd. Grub distributed internet crawler, 2003.
[5] Odysseas Papapetrou, Stavros Papastavrou, and George Samaras. Dis-

tributed indexing of the web using migrating crawlers. InProceedings of
the Twelfth International World Wide Web Conference (WWW), 2003.

[6] Odysseas Papapetrou, Stavros Papastavrou, and George Samaras. Ucym-
icra: Distributed indexing of the web using migrating crawlers. InPro-
ceedings of the 7th East-European Conference on Advanced Databases
and Information Systems, Dresden, Germany, 2003.

[7] SETI. Search for extra terrestrial intelligence, January 2004.


