

Communities: Creating and Quering Ad-hoc Databases
based on Concepts.1

Chara Skouteli*, George Samaras*, Christoforos Panayiotou*, Evaggelia Pitoura+

Department of Computer Science, University of Cyprus*
CY-1678 Nicosia, Cyprus

{chara, cssamara, cs95gp1}@ucy.ac.cy
Department of Computer Science, University of Ioannina+

Ioannina, Greece, Greece

Abstract. Today, the largest amount of data is not stored in traditional database
systems. Instead, a significant amount of this data is stored in personal computers,
in the various types of PDAs and lately in the so called smartphones. The ability to
network these devices creates, what we called, a “global” or “universal” database.
This database is characterized by an enormous volume of information, high
distribution, and high degree of heterogeneity. The vision, and the theme of this
paper, is for the user to have the ability to effectively query such a database, taking
into consideration the mobility of the user and the device. In order to face
heterogeneity, and at the same time maintain and respect the autonomy of the
various nodes, we assume that the querying and accessing of this data is done via
mobile web services. What we proposed in this work, is the semantic grouping of
these services over this global computational net. The main idea is to create a
dynamic overlay network –like the peer-to-peer systems– that connects and groups
semantically related services, effectively creating a network of “communities” and
have the user querying instead this network. The definition of what services belong
to a particular community (i.e., what services are semantically similar) is build
around the notion of a “concept” which is either given a priori, during or derived
from the definition of the service. Concept is a semantic notion and describes a
specific property, for example, “travelling”, “weather”, “taxi reservation” etc.
Context based queries, containment and continuous queries are also of special
interest within this new idea of communities and concepts and we attempt to study
them within this paper.

1. Introduction

The plethora of today’s data sources in combination with the increasing number of

mobile devices along with the progress of wireless networking have enabled a new kind of
data-offering services. This new kind of services is characterised by mobility, locality and
variety. The first characteristic –mobility– comes from the fact that the users, as well as
many data sources are themselves mobile. An example of such a mobile service would be
the provision of local weather data by a sensor attached to a mobile device (e.g. PDA). On
the other end, the data consumer (a.k.a the user), is interested only to the local to him data
– making locality a characteristic of these services. To fully understand the need for
locality we must examine the mobile user and his data needs. Doing so we see that when a
user is on the go he’s more concerned for data on his whereabouts (e.g. Where can I stop
to eat? Where’s the nearest ATM?) or his destination (e.g. Is it raining at where I’m
going? Will I find a good hotel there?). The last characteristic of this new era of

1 This work is partially funded by the Information Society Technologies programme of the European
Commission under the IST-2001-32645 DBGlobe and IST-2001-35495 MEMO projects.

mailto:cs95gp1}@ucy.ac.cy

information offering services –variety– derives from the vast number of different types of
available data and information. Furthermore the same data can be interpreted and
presented in many different ways adding to the “variety factor”. The problem, however, is
that these characteristics make the retrieval of useful information much more complex and
difficult for the user.

So, having in mind these three characteristics, the need to design a system that hides
the imposed complexity from the mobile user is formulated. The ideal would be that the
mobile user is able to identify the closest to him mobile service provider (while still
moving) and then select the service he wants to use. This leads to a twofold problem: first
identify the close by services (and consequently mobile service providers) and then select
the wanted service. The first aspect of the problem could be seen as a distributed data
management problem: we have several (distributed) services that a) need to be described
and b) need to be located. Having in place a mechanism to manage the description,
indexing and querying of data and services as well as the discovery of services that are
offered by mobile devices is the first step in solving this problem. Furthermore, such a
mechanism should be implemented at the infrastructure level. In other words the cells that
provide the network link to the mobile devices should also handle the previously stated
data. In effect that means that we need to have a Cell Manager – a server that manages the
services discovery and all related data for each mobile device within its coverage area. In
order to present our approach we have designed a set of specifications, as well as
produced an early prototype implementation of the Cell Manager infrastructure
(essentially a group of interconnected Cell Managers). A short description of the Cell
Manager infrastructure will be given at section 2.1.

Following the discovery of services the mobile user needs to select the services to use.
However this is easier said than done. At the time being the mobile computing
environment is still poor as far as resources such as display capabilities and processing
power are concerned. So we must limit the user’s possible service selections to the ones
that are (strictly) relevant to his interests. Thus we need to know his preferences and to
have a good description of the available services. As already discussed the Cell Managers
support the description of mobile services. In effect they manage all the required data
(user’s, device’s, service’s profiles), allowing us to exploit these data in order to contain
the user’s choices to the relevant ones. All primary objects, users, devices, services and
data, are captured in the form of an ontology, which fully describes them. The use of
ontologies gives the opportunity to further manipulate these data by querying not only
their location but also on their semantic concept (the concept that is used to describe
them). Having this possibility enables us to contain the user’s choices to a specific
concept as well as to localize them. Utilizing the notion of concept we would like to
introduce the notion of context containment queries. Context containment queries are like
regular containment queries in the sense that their purpose is to contain the results of a
query within the boundaries of a specific element. In our case this element is the context
of the data, namely a specific concept (e.g., in case of services, the service type and
description). So using context containment queries (i.e., queries around a concept) would
allow the user to make an easier and fastest selection of mobile services.

However, the introduction of new users and services, the mobility of users and
services, creates a dynamic and constantly changing environment that we must also take
into account. We need to continually re-evaluate each user’s context containment queries
in order to be able to provide him with up-to-date, available and relevant to his needs
services. It is thus, imperative to add continuity to the context containment queries. This

can be achieved by merging the notion of context containment queries and continuous
queries. In addition to the temporal dimension, mobility adds the spatial dimension as
well. In the mobile environment it is desirable (and some times imperative) to use the
closest to the requestor mobile services/resources. The need to include the location
concept within the context containment queries is a must. Using the location (i.e. distance
of mobile objects) we can prioritise/sort the query’s results.

Viewing the location as a semantic concept allows us to treat it the same way as any
other concept. Location can be considered, in some extend, as a semantic concept that has
only spatial characteristics. And as such it can be used in conjunction with any concept in
a containment query. So viewing location as a minor concept or a parameter concept of
the service’s main semantic concept enables us to use the same mechanism for answering
both context containment and location queries.

The challenge now is how to manipulate more efficiently the available metadata
information in order to support these context containment and continuous queries.
Towards this end we introduce the notion of data communities. A community can have
any combination of spatial, temporal, or thematic characteristics that define the context
(namely the concept) that the community revolves around. Vice versa the collection of
data on mobile objects around a specific context (e.g., location, user/service/device
characteristics, etc.) forms a data sharing community. For example, all primary objects (a
PO can be a user, service or device which may or may not be mobile) that provide weather
services for Athens belong to the “Athens weather” community. If a PO wants to know if
it is raining in Athens, it will use the “Athens weather” community in order to find
another PO that can answer its question. In essence forming and linking this communities,
creates a dynamic overlay network that can be used in order to achieve our goals. In this
paper we describe how to develop these communities and discuss why they are a more
efficient way to support the above mentioned context containment and continuous queries.

2. Overview

The Cell Managers can be viewed as a distributed data management system

infrastructure. The main objective of this infrastructure is to connect a number of devices
and provide support for (i) describing, (ii) indexing and (iii) querying their data and
services. Cell Managers adopt a service-oriented approach to capture data in order to be
exchanged between the participant devices. As already stated one of our goals is to
present a mechanism of creating and processing ad-hoc databases over the Cell Manager
infrastructure. The objective of this mechanism is to support context continues and
containment queries as more efficient as possible, considering problems like
disconnection and device limitations. Towards this end, each Cell Manager provides an
interface that enables the creation of a distributed context aware ad-hoc database system
comprising of data provided by the registered to the Cell Managers mobile devices.

2.1 Cell Manager Infrastructure

POs are the main source of the data and resources to be handled. Their number and

location may change over time; new POs may leave or enter in the perimeter of the Cell
Managers (CM) infrastructure. The POs may be connected to the system and possibly to
each other in order to exchange data through services. The interconnected CMs form the

necessary infrastructure to support the connection to the system and cooperation between
the POs. The following paragraphs (briefly) present the basic components of the Cell
Manager infrastructure, as well as the structure and functionality of POs and CMs.

2.1.1

2.1.2

Primary Objects. The primary providers of resources are either mobile (e.g. smart
phone, PDA) or stationary (e.g. pc, workstation) devices called POs (Primary Objects).
A PO has the following basic functionality (i) request and retrieve data, (ii) produce and
share data, (iii) create and publish a service, (iv) communicate with an access point (a.k.a.
a CM) and function as a source.

Cell Manager Specification. The Cell Manager is consisted by the following

components (also see figure 2.1).
1. Cell Observer, which is responsible to listen to the cell for user messages. When

a new device wants to connect to the system then it must discover the cell
manager. In order to do that the device broadcasts initiating messages. The
monitor retrieves these messages and replies to the device with the name/address
of the cell manager.

2. Device Location Manage. In order to enable the creation of a location
management mechanism each PO has a home location (which is the address of
the CM that the device registered for the first time) and a current location which
is the address of the CM that it currently belongs. The Device Location
Mechanism is responsible i) to inform the appropriate home CM of a device
when the PO enters its domain, and ii) to be aware of the location of all POs that
have it as home CM. Because of object mobility the location management
mechanism is a very important factor for the system efficiency. What happens
when a PO moves to an other cell? Do we have to move its services to the next
cell too or not? How often a device moves to a new cell? This kind of questions
must be answered beforehand in order to adapt the location management
algorithm. In our case we assume that the cell covers a small geographical
domain and the POs moves fast from one cell to another and thus, it would be
inefficient to re-register PO’s services to the current CM. Our approach is to
update only the location of a PO and when we need to find a local service we
query the home CMs of all POs that are currently in the local cell.

3. CM Directory, a list of all the system’s CMs. The CMs must be aware about the
existence of all other CMs in order to i) allow the creation of a location
management mechanism, and ii) pass on queries that can not be answered locally
(by them). The CM directory is a set of CM ontologies which describes each
CM. The CM ontology includes contact information for each CM.

4. Data Store Manager, which is responsible to maintain the database used to store
the services’, users’ and devices’ profiles. It is also able to query these data.
Finally the Data Store Manager classifies all the captured data according to their
concept.

5. Community Directory, a list of all the system’s communities. The usage of
communities will be discussed in next paragraphs.

 Cell Manager
Cell Observer

Community
Directory

Data Store Manager Query Executor

Device Location
Manager

Service
Descriptio

Device
Profiles

User
Profiles CM Directory

Figure 2.1: Cell Manager Architecture

2.1.3

2.2.1

Metadata management. The metadata management mechanism that is adopted is
an important design issue for systems like this one. Firstly because it is responsible for the
efficient data retrieval, and secondly because it affects the type of queries that the system
can answer. In our case data stored in CMs can be divided to three major categories (i)
content data which are the actual data registered by the user on the PO, (ii) profile data
that describes the user and his/her devices as well and (iii) movement data to record the
movement of a user or a device in a continuous basis. Essential metadata provide an
abstract view of data and services, kept on a PO. All those types of metadata aim to give a
classification and at the same time add semantic context to PO devices, users and services.
CMs use XML to exchange this information, RDF Schemas to assign semantic context to
structural elements and finally ontologies to denote hierarchies and relationships.

2.2 Context Awareness Queries

The increasing number of mobile devices creates the vision of a more sophisticated

behaviour and interaction among them. Mobile devices may present various limitations,
however they also present an opportunity for developing applications that are able to serve
user needs while he is on the move. Such applications are mainly based on context
information, e.g. user location, user preferences coupled with current activities, device
characteristics etc. These applications need support by a distributed data management
system infrastructure -in our case interconnected CMs- that will enable the execution of
context awareness queries. By context awareness queries we denote the queries that (a)
give context information in a contained fashion and (b) give results in a continues fashion.
Thus we have the merger of two types of queries: context containment queries and
continues queries.

Context containment queries. Basically context containment queries are an

extended notion of regular containment queries. The goal here is contain the results of the
query within the boundaries of a specific contextual concept. This of course means that
the data that are queried are related to a specific concept, either directly or indirectly. To
understand this lets view the case were we have a service for hotel bookings. The service

would be directly related to the hotel concept. To find the entire hotel services a regular
containment query would suffice. However since the hotel concept is related to the
tourism concept so would be the service, this time indirectly. Even further the same
service could be related to the Asian concept if, for example, it covers only hotels in Asia.
Thus another (regular) containment query that tries to retrieve information about Asia
culture would also include this service to its results. As we can see, there is the need to
give more accurate descriptions of the used concepts both as a query criterion and as a
describing attribute of a service (or other data). In other words we need to define the
context under which the containment query will run, and of course how this context will
affect the produced result.

The first step towards defining the context of a concept is to give a more detailed
description of it. Towards this end we can enlist the aid of ontologies. An ontology is used
to fully describe an entity [6, 7, 8, 10]. However this is not enough in order to avoid the
previously mentioned situation. To do so, we need a way to classify and interrelate the
used ontologies. In order to achieve this classification and interrelation we can use
taxonomies in which the elements are the aforementioned ontologies.

Such taxonomy would have the form of a tree in which the inner nodes contain an
ontology that describes their children nodes. This means that each child of a node (with
the exception of leaves) would contain another ontology, which describes its own
children, but one that would be under the contextual umbrella of the parent node.
Recursively this leads to a hierarchy of ontologies that with each (deeper) level of the
hierarchy we have a more refined and accurate description of the enquired data (in our
case these data are services). The leaves of the taxonomy tree contain the actual data (e.g.
service details, location, requirements etc.).

Given a taxonomy we can run an inquiry for a specific topic by doing a top down
search for matching ontologies within the taxonomy tree. During the search, the parent
ontologies are used to narrow down the contextual domain of the children nodes resolving
in this way the aforementioned problem where we are asking for information on Asian
culture and we get hotel reservation services. This search is in effect what we call context
containment query: a containment query that runs over a taxonomy that gives us
contextual constrains.

2.2.2 Continues queries. A continual query is a standing query that monitors updates of
interest using distributed triggers and notifies the user of changes whenever an update of
interest reaches specified thresholds or some time limit is reached.

It is expressed in terms of a normal, SQL-like query, a trigger condition, and a stop
condition. Some continual queries may also include a start condition and a notification
condition (i.e., when the condition for notification of results is different from the trigger
condition).

In our case, continuous queries come into play in our effort to keep the result of a
concept based query up-to-date. This is indeed essential since services are quite mobile
and new POs might join or leave the system dynamically.

3. Querying Cell Managers via Communities

CMs handle a plethora of data stored either on the POs or on themselves. Our

objective is to exploit these data in order to (better) support continuous context

containment queries (context awareness queries). CMs store data that describe user’s
profiles, services and devices. These data are the core of the available context information.
Because of the fact that CMs are geographically organized they are able to support
location aware queries. However, context information is not limited just to location data
but also includes user preferences, device characteristics and provided services, which is
very important information as well adding significantly to the complexity and dynamicity
of the system.

The problem now is how to handle or manage all these data. What happens when the
user who provides a service gets disconnected or moves to another cell? What if the user
who requested the service changes location? How a new user and the new services are
dealt? This dynamic environment is more exigent than the classic mobile environments
where only the requester can move around. Thus, we are in need for a fast and efficient
way to find and query services that are available to POs. Using continuous queries that
constantly update the list of the available services would solve this. However the high cost
of the queries and scalability requirements make it extremely difficult to meet the needed
level of efficiency or even achieve reasonable scalability. The problem becomes more
intense considering that the queries asked are context containment queries because we
need to minimize as much as possible the produced results. Thusly, the inquired services
must be organized/indexed in the appropriate manner.

A good way to organize these services is by grouping them based on some common
characteristics and then rerouting the incoming context queries to the appropriate group
(which has a greatly reduced volume in comparison with the whole list of available
services). In effect these groups form a “community”: the citizens of the community are
POs’ ontologies of services or devices or people. All the citizens of the community share a
common concept that they revolve around. E.g. the citizens of the weather community are
weather forecast services.

Having the communities allows the incoming context awareness queries to run faster.
As stated, our goal is to efficiently answer queries like the following “Find me all the
services that provide weather forecasts and are near Athens.” If we take the concept of the
query to be “weather” we can easily utilize the weather community to efficiently answer
it. The efficiency comes from the fact that communities are, after all, a collection of data
pointing to the resources/data around a concept, just like a database index. That bodes well
with the overall spirit of creating and managing a very large, ad-hoc, metadata database.
The argument here would be that if we use communities as an index, why not use one
regular, centralized and unified index? The answer to this question firstly lies to the
scalability issue, as having one centralized index is not the optimal way to resolve it, in
contrast with a distributed approach. The heterogeneity of the environment is another
factor that makes the use of such an index cumbersome. A third factor is the semantic
nature of the required index. We need an index that can give as the location of a service
based on its semantic description, thus complicating the structure of the index. Finally, as
the complexity of the index increases the cost of its updating becomes prohibiting.
Communities on the other hand tackle all these problems with grace:

• The distributed setup of communities provides the much needed scalability.
• Heterogeneity in the environment doesn’t affect communities as long as we use a

standardised way of describing the available resources/data.
• Communities can, by design, provide semantic based indexing of resources/data.
• Updating a community (which has much fewer members than a unified index) is

more cost effective. The updates are distributed to a number of communities
(hosts), a fact that limits the load on each individual community.

3.1 Organizing Communities using Taxonomies

Just having a collection of communities doesn’t entirely solve the problem. We also
need to organize the communities. An efficient way to do this is to classify them with a
taxonomy of describing ontologies (as discussed when presenting the notion of context
containment queries), as shown in figures 3.1 and 3.2. Having this taxonomy (tree)
enforces that each community will be interrelated with the other available communities.
The interrelation is achieved by building the communities using concepts which are taken
by the taxonomy tree. Note that the concepts are described by an ontology. Using an
ontology to denote the concept of a community, we can have a more analytical description
of its purpose, and in extend, what services should belong (be enlisted) to it. To this end,
community concept denoting ontologies are comprised of keywords classified in tree form
to describe the objective of the community. [9] used a similar approach to represent
entities.

Name: Sports

 Children: Basketball,
football…..

Father: Entertainment

Description: sports,
athletes, basketball,
football …

(b) Name: getWeather

Provider: device13

Description: weather
forecasts, storm report
…

Methods:
getWeather(location)
getTemp(location)

(a)

Figure 3.1: Service (a) and community (b) describing ontologies

Information Community

Finance
Community

Finance Community News Community Sports Community

Basketball Community

Services

Community Concept
Figure 3.2: Taxonomy of communities

To implement these communities we introduce the notion of the Community

Administrator Server (CoAS). CoASs are responsible for the creation and management of

the communities. Each Community Server covers a partial or the entire set of CMs, and
each CM may be covered by many CoASs, in a dynamic manner. Who is covering who is
decided in real-time according to the current location of the online resources/data (that
move along with POs). In order to support this real-time operation, the CMs propagate to
the relevant CoASs the service’s describing ontology, when for example there is a change
in the service’s ontolology (e.g. a service changed its scope to a more specific one: from
weather forecast to storm warning). Figure 3.3 shows a possible geographical distribution
of the various CoASs. The complete set of CoASs constitutes a global taxonomy tree of
communities. (Each CoAS serves one and only one community and vice versa). Also note
that having in place these CoASs in essence, we form a dynamic overlay network that is
above the low level network infrastructure but still able to answer queries referring to data
sources that are connected to that low level infrastructure.

Figure 3.3: Geographical distribution of communities: a dynamic overlay network

CM

CoAS

3.2 Community Administrator Server (CoAS)

Community Administrator Servers (CoAS) are interconnected through a network, their

major objective is to create communities of services, according to a concept (e.g. the type
of the service, the type of the device that provides the service or the provider’s profile). In
other words, each CoAS has a contextual concept (described by an ontology) taken from a
global taxonomy of concepts, which is used to build the relevant community. Essentially
this means that a CoAS groups together data objects according to its specific concept, e.g.
a community of all services which provide weather information.

3.2.1 CoAS architecture. Figure 3.4 illustrates the general architecture of a CoAS. In
detail, the components that comprise a CoAS are the following:

i. Service Ontology Directory lists all service ontologies currently handled by the
specific CoAS.

ii. CoAS directory lists children CoAS. This directory is necessary in the case where
the specific CoAS is unable to satisfy an incoming query; the query will be
forwarded to another CoAS. Listing the children-communities enables finding a
finer grained community that can answer the current query in more detail. However
if none of the children can answer it the query needs to be forwarded to the

parent/root community which may pass it down to its other children-communities
or up to its parent/root community. The parent-children notion comes from the
organization of communities in a tree (global taxonomy of CoASs and concepts).

iii. Query executor is the most important component of the CoAS, as it is responsible
for matching an incoming query’s criteria with service describing ontologies,
including any location constraints. In effect, it is the context awareness query
processor.

iv. Concept Alerts Directory is used to better support continuity for incoming queries
by providing triggers for them. It keeps a set of context information that may
change during time and the names of the user agents that wish to be informed in
case of updates. Upon such an update all interested user agents are informed. E.g. a
user agent wish to be informed whenever a new game service is available. A user
agent can be any application that uses the functionalities of the system.

v. CM Directory lists all the CMs of the system. This directory maintains CM
ontologies. These ontologies have information about the location of the respective
CM as well as how to contact all other CMs. This directory is used when a new
community is created. The community will inform all CMs for its existence in
order to enable acceptance of service registrations from them.

Figure 3.4: CoAS Architecture

 Server Manager

Concept Alert
Directory CoAS

Directory

Resource/Data
Ontology Directory Query Execution

Manager CM
Directory

Resource/Data
Ontology Manager

 CM
Data Store
Manager

 Service, Device
or User Ontology

Repository

3.2.2 Creating the Global Taxonomy Tree and the Communities. As mentioned in
section 2.1.2 CMs classifies internally (and locally) the services registered to their cell
according to their concept. We can use the classification of the CMs to start the creation
of the global taxonomy tree. After creating the generic communities the root CoAS
informs the CMs about the available communities. CMs must know the available
communities in order to be able to forward incoming queries and service changes to the
appropriate CoAS. CMs are the first point of contact with the actual POs, which are the
information source, thusly putting them in a premium position for detecting updates in
either, their location or provided services and/or profiles. It is easier (more efficient) to
keep CoASs updated with service changes, changes to members of their community, if

they are notified by the relevant CASs for example. When a service does not belong to an
existent community then the CAS will send its registration to the root CoAS, which is
responsible to create a community with the service’s concept. Upon the creation of the
community a message will be broadcasted to all CASs informing them about the new
community.

In case where a community becomes too large, reducing its efficiency, it can be split
into two sub-communities. In order to decide what concept should be used to build the
new community we cluster the existing community and then select the concept of the
largest cluster. This update means a minimum amount of changes for the CoASs tree: only
the children of the splitting CoAS and its parent need to be updated. On the other hand, as
far as the CASs are concerned, the number of changes to be made is high: every CAS
needs to update its copy of the CoAS tree. The update can be broadcasted on the DBGlobe
network. To ensure though that during the updating user queries can be answered, a CAS
can send the query to the parent CoAS if it fails to contact the wanted one. Keeping the
rate of the CoASs splitting low ensures that a CM will always find a CoAS to redirect his
incoming queries. CoASs, knowing their children, can further redirect incoming queries to
them and so the query eventually will reach a CoAS where it can be satisfied. More
details on how context awareness queries are satisfied are presented in paragraph 4.2.

3.2.3 Keeping Communities Updated. As already mentioned the system’s environment
is constantly changing with new POs coming online and others going offline or moving
around. As these changes greatly affect the communities it is imperative to keep them
updated. In order to keep them updated and keep their efficiency level intact, the
responsibility of detecting the changes and notifying the relevant communities is pushed
to the CMs. CMs are ideal for that job since they are the actual point of contact with the
POs, and undoubtedly, are the first to detect any changes.

Before continuing our discussion on how the communities are kept updated we must
first identify the type of the possible updates. There are four distinct types of updates each
caused by a different kind of events:

1. The first kind of events covers the connection of new POs resulting in newly
available resources/data. If a PO gets connected then it subscribes its services to
the local CM. The CM is responsible to register those services with the
appropriate CoAS. The CM can use, for example, its service taxonomy to
somehow identify the appropriate CoAS (see section 3.2.4).

2. When a PO wishes to unsubscribe a given service, then the relevant CoAS must
unsubscribe the service as well.

3. The third type of events occurs when POs get disconnected, rendering their
services unavailable. The noticing CM must inform the relevant CoAS(s) of the
temporarily unavailability of the PO’s services.

4. Finally the last kind of update producing events is the detection of changes in the
services’ describing ontologies (changed characteristics). E.g. if a generic service
previously provided by the given PO changes into a more specific one then it is
possible that it should be member of another community. The CM has the
responsibility of the service’s migration from the, now irrelevant, community to
the relevant one.

The next issue that needs to be resolved now is how CMs know which one is the
appropriate CoAS for every update? Utilizing bloom filters [4, 5] in combination with the
services’ descriptions and the community concepts does the trick.

3.2.4

3.3.1

Using Bloom filters to Match Resources/Data to Communities (CoASs). Bloom
filter summaries are a mechanism to efficiently identify the CoAS that may contain data
relevant to an incoming query. Bloom filters are hash based indexing structures designed
to support membership queries [5]. As CoASs are represented by ontology schemas, we
need a method to query these schemas. Bloom filters are most likely to use a query
language based on XPath [3] that allows us to exploit the structure of the schema as well
as their content. Bloom filters as described in [5] are multi-level structures that support the
efficient evaluation of path expressions including partial match and containment queries.

In detail, Bloom filters are compact data structures for probabilistic representation of a
set that supports membership queries. Consider a set A = {a1, a2, …, an} of n elements.
The idea is to allocate a vector v of m bits, initially all set to 0, and then choose k
independent hash functions, h1, h2, …, hk, each with range 1 to m. For each element a ∈
A, the bits at positions h1(a), h2(a), ..., hk(a) in v are set to 1. A particular bit may be set to
1 many times. Given a query for b, we check the bits at positions h1(b), h2(b), ..., hk(b). If
any of them is 0, then certainly b is not in the set A. Otherwise we conjecture that b is in
the set although there is a certain probability that we are wrong. This is called a “false
positive” and it is the payoff for Bloom filters’ compactness. The parameter k and m
should be chosen such that the probability of a false positive is acceptable.

Bloom filters are used to determine which CoAS should be updated when a new
service is added or deleted from the system. They are also used to find which CoASs are
relevant to a given query. In particular, given a service description, using the Bloom
filters, we can efficiently locate the appropriate CoASs.

There is one multi-level Bloom filter for each CoAS that we call community Bloom
filter. Let CBF(A) be the community Bloom filter that corresponds to CoAS A. To
produce the CBF(A), the k hash functions are applied to all the concepts (keywords) that
describe the community A. Given a service s, to find the CoAs that are associated with the
service s, we apply the hash functions to each of the concepts (keywords) that describe the
service. For each such concept of the service, we check which community Bloom filters
match it. There is a match, if all bits at the corresponding positions of the community
Bloom filter are set to 1. The communities that match the service s are the communities
whose community Bloom Filters match all concepts describing the service.

3.3 Scenarios and Queries Utilizing the Communities

In this section we present use case scenarios of (i) how a new service is getting known
by the CoASs and (ii) how a query that arrives to a CM is executed. Finally a list with the
supported query types and their needs follows.

Registering a new service. When a PO logins to the system for the first time it

needs to register its services with it. In order to make the idea of communities to work, the
newly available services must also register to a CoAS. The process of the registration is as
follows:

1. The PO logins for the first time to the system. The CM that the PO connected is
considered its “home location”. As such it has the responsibility to point to the
real location of the PO while it is moving around (figure 3.5: 1).

2. Just after the first login the PO registers its services to the connected CM. The
CM gets the services’, user’s and device’s ontology schemas and stores them to
his local database (figure 3.5: 2).

3. Upon the completion of the registration the CM utilizes Bloom filters (figure 3.5:
3) in order to find the community (or communities) that the given service belongs
to. Having found the appropriate community, it forwards to it the resource’s
describing ontology. In case that there is more than one community that can
accept the resource as its member, the ontology is forwarded to all of them. Step
3 is repeated for each and every one of the new PO’s resources.

4. When a CoAS receives a new resource/data describing ontology it checks if it
should be accepted as a member of its community. This is necessary as Bloom
filters are not entirely accurate and can point to irrelevant CoASs along with the
relevant ones. If the resource/data is not accepted as member it is simply ignored
and the process for that specific CoAS is terminated.

5. The accepted resources/data are registered in the CoASs by means of storing their
describing ontology in their directory (figure 3.5: 5). Along with the describing
ontology, the “home location” CM is also stored. Doing so enables CoASs to
satisfy location criteria of incoming queries by asking the “home location” CM
for the service’s current whereabouts. It also has the advantage of eliminating the
need to keep all the CoASs updated with the movement of their member
resources (and in effect their containing POs). Thus a scalability and efficiency
pitfall due to the expensive and continues updating is avoided.

6. The final step of the process is to notify the concept alert directory (figure 3.5: 6)
about the new member of the community. The concept alert directory will check
for any pending queries that might be interested in the new member and it will
trigger them.

Figure 3.5: Login Use Case Scenario

PO

1 Server Manager Query
Execution

CM
65

4 Concept Alert
Directory 3 Bloom

Filter
Indexer

Data Store
Manager

Resource/Data
Ontology
Directory

2

CoAS
Directory

Resource/Data
Ontology
Manager

Service, Device
or User Ontology
Repository

3.3.2 Servicing a Query. From time to time the various POs, services and users need to
ask queries to locate/discover the available services. The general procedure for servicing
such a query is as follows:

1. A PO, service or user sends a request/query to its currently connected CM (figure
3.6: 1). The general form of a supported query is a request to find a particular
resource/data. To make the scenario more understandable for the rest of the
scenario we will use the following request: “Find a Nearby Restaurant”.

2. If the receiving CM can satisfy the query (figure3.6: 2.1) then it returns the results
to the issuing PO, service or user and the process terminates (figure 3.6: 2.2). For
our example, the CM could satisfy the query if there is any “restaurant service”
currently connected to it.

3. In case that the incoming query cannot be satisfied by the receiving CM, then it
must be forwarded to the appropriate CoAS. To find out who is the appropriate
CoAS, CMs utilize Bloom filters. In our example the CM will check the Bloom
Filter Indexer (figure 3.6: 3.1) for communities on the concept “food services”.
Upon finding the appropriate CoAS, the CAS will forward the query to it (figure
3.6: 3.2).

4. The Server Manager of a CoAS upon receiving a query sends it to the Query
Execution Manager (figure 3.6: 4.1). The query manager in cooperation with the
Service Ontology Manager (figure 3.6: 4.2) will find all the matching services.
The matching is done on a semantics level. All the matching services are marked
in a list. For the example query, the resulted list will contain all the available
restaurant services currently registered in the CoAS unless other constrains are
also imposed.

5. If there are any location constrains then the resulting list of step 4 will be queried
to satisfy them. In order to do so, first the service ontology manager will retrieve
the services current locations from the “home location” CMs (figure 3.6: 5). After
this retrieval, the query execution manager will apply all the location constrains.
To relate with our example, a range query will be run on the service list to limit it
to the nearby services, of the CM from which the query originated.

6. The resulted list is the answer to the incoming query and it will be relayed back to
the issuing PO, service or user through the CoAS’s service manager (figure 3.6:
6).

Figure 3.6: Querying use case scenario

6PO 1
Query

Execution
Manager

Server Manager 2.2 4.13.2
CM 4.2

3.1 Bloom
Filter

Indexer

 Data Store
Manager Concept Alert

Directory

Resource/Data
Ontology
Directory

2.1 5 CoAS
Directory Resource/Data

Ontology
Manager

Service, Device
or User Ontology
Repository

5

3.3.3 Examples of Supported Queries. The queries that are supported by CoASs are
divided into two major categories. In the first category we have queries that are run once
and in the second category we have standing queries that need to be revaluated from time

to time. These two categories can be further broken down according to if the issued
queries include location criteria or not. The location criteria, however, supported is the
same for both categories.

Before continuing, note that all queries support by CoASs are forwarded to them by a
CM. Thus, the term “forwarding CM” means, the CM that received an incoming query
from a PO, service or user and forwarded to a specific CoAS. To make our presentation
simpler note that the term issuer will be used to denote the PO, service or user that posed a
query.

The first category includes the following types of queries:
• Find all services that provide weather forecasts. The query can be easily

answered by the weather community; we just need to forward it to the weather
community. In a SQL like language the above query would look like this:
SELECT * FROM SERVICES WHERE type LIKE ‘weather forecasts’

• Find all the restaurant services that do not offer a vegetarian menu. To answer
this query we can retrieve all the members of the restaurants community and then
exclude the members that also belong to the vegetarian community. Again in a
SQL dialect the query would look like this:
SELECT * FROM SERVICES WHERE type LIKE ‘restaurants’ AND NOT IN
(SELECT * FROM SERVICES WHERE type LIKE ‘vegetarian restaurants’)

The second category includes the following types of queries:
• Notify me for each newly available weather service. As shown in the service

registration use case scenarios, this kind of queries can be answered with the use
of the Concept Alert Directory. In a SQL like manner the above query would be:
SELECT * FROM SERVICES WHERE type LIKE ‘weather forecasts’ AND
available_from = (time – dt)

• Give me weather services updates every five minutes. Again this query can be
answered with the aid of the Concept Alert Directory. To answer it, firstly the
query “Give me the weather services updates” (which is a query of the first
category) will be stored in the Concept Alert Directory. Afterwards, every five
minutes the Concept Alert Directory will feed the stored query to the query
execution manager and the results will be pushed to the issuing PO, service or
user. Again, in SQL would look like this (note the “repeat” and “every” extending
keywords that are necessary to express the continuity of the query):
SELECT * FROM SERVICES WHERE type LIKE ‘weather forecasts’ AND
available_from = (time – dt) REPEAT EVERY 5min

Adding location criteria requires that the current location of the inquired services is

known. Towards this goal, communities, as already mentioned, know the “home location”
CM for each of their members. When there is the need to know the current location of a
member service, the CoAS asks it from the “home CM”. The “home CAS” is able to keep
track of the whereabouts of its registered services. So, in order to answer queries with
location we use the following procedure:

1. The query is answered by the Query Execution Manager without the location
criteria.

2. For each member service in the intermediate results the Service Ontology
Manager ask its “home CM” for its current location.

3. The Query Execution Manager applies the location criteria to the updated
intermediate results producing the final query results.

In the case that the original query’s type was of the second category, then location
criteria are included when it is modified and stored in the Concept Alert Directory.

The support location criteria include the following:
• Point queries. E.g. what are the available weather services here? An a SQL like

example (notice the keyword ‘near’):
SELECT * FROM SERVICES WHERE type LIKE ‘weather forecasts’ AND
location NEAR (CoAS_location)

• Area queries. E.g. what are the available weather services for Athens? Again, an
a SQL like example would be (notice the keyword ‘area’):
SELECT * FROM SERVICES WHERE type LIKE ‘weather forecasts’ AND
location IN AREA (‘Athens’)

• Range queries. E.g. find me all the vegetarian services within one kilometre from
my location. Note that this kind of query also requires that the location of the
issuer is also known. To make matter worse, if we add the criteria “every five
minutes”, we also need to know how the issuer’s location is updated. In order to
enable this type of queries the CoAS must also know the “home CM” of the
issuer. Fortunately this is a piece of information that can be retrieved by the issuer
itself through the forwarding CM. Having the “home CM”, the CoAS can retrieve
the issuer’s location from it, if the forwarding CM fails to deliver it (e.g. in case
where the issuer moved to another CM). In an SQL like manner it would look
like this (notice the keyword ‘within’):
SELECT * FROM SERVICES, POs WHERE SERVICES.type LIKE ‘weather
forecasts’ AND PO.id = askingPOid AND SERVICES.location WITHIN
(POs.location, 1 km)

• Nearest neighbour queries. E.g. find me the closest vegetarian service. This is the
same as the range queries with the modification that the results are sorted based
on the range in ascending order and only the first row is returned. The previous
example would be modified as follows:
SELECT TOP 1 * FROM SERVICES, POs WHERE SERVICES.type LIKE
‘weather forecasts’ AND PO.id = askingPO.id AND SERVICES.location
WITHIN (POs.location, 1 km) ORDER BY RANGE (SERVICES.location,
POs.location)

4. Implementation Issues

In order to implement the CoAS we use Java technology (JSDK 1.4.1). Additionally as

mentioned CoAS are distributed across the network and communicate with other system’s
components like CMs and POs. This leads to the need of having a message passing model
in order to exchange data between them. The communication between communities and
CMs is achieved:

i. Through the remote method invocation model and more specifically the Java
RMI package. Java RMI is also available for the J2ME platform, enabling light
devices (such as mobile phones, PDA, etc.) to use it for communication purposes
or to act as service providers.

ii. Web services model. In this case each major component (CM, CoAS) can been
seen as a web service. The clients (CoAs, PO, applications) use the wsdl of the
appropriate CM in order to contact it. This models allows implementation
independency.

 In order to allow devices to discover the CM covering their location they broadcast
UDP packages in the local cell’s access point in a predefined port. These (initiating)
packages are retrieved by cell monitors who reply with the remote bind name and address
of the local CM. When the device retrieves the name and address of the CM, it uses one of
the above communication methods to interact with it. In case of communities, there is no
need to discover the network (as in the devices’ case). Communities know apriori the
names and addresses of CMs and they can communicate remotely with them. Finally RMI
or Web Services are also used in order to facilitate communication between the system’s
communities.

Another important issue that needs to be handled by the implementation is the format
of the data stores. Currently we are experimenting with two different approaches in order
to decide which one produces the optimal results in our case. The first approach is to store
all the available context information in XML documents [2] and use X-Query [11] to
retrieve information from them. The advantages of XML documents include (a) ease of
transferal from device to device and (b) can be stored in light devices and (c) flexibility
due to their semi structured form. The second approach is to use classic database
management systems. The upside is the use of ready and optimal mechanism to store,
retrieve and update the available data. The downside however comes from the very nature
of the kept data which are ontology descriptions (mainly large text blocks) and that limits
the speed advantage. The database approach also has the disadvantage of having to
transcode the data to a light format in order to send them to a light device.

5. Conclusions

In this paper we developed a middleware that aims to provide high level semantic

query processing. This middleware collaborates with the low level Cell Manager
infrastructure, to answer not only location based queries but semantic level ones in an
organized and efficient manner. The notion of ad hoc databases is formalized around the
idea of communities. In fact, in this paper we utilized this idea and defined/created ad hoc
databases around “concepts” and not just around location. We called these ad hoc
databases, “communities” and instead of issuing queries just around the notion of location
we do issue them over these communities and around the concept they represent.
Communities provide somehow a semantic type of distributed index over heterogeneous
resources. Context based queries, containment and continuous queries are also efficiently
handled via the proposed middleware and its functionality. This middleware is being
designed and its implementation is quite advanced.

References

[1] George Samaras, Constantinos Spyrou, Evaggelia Pitoura, Marios Dikaiakos,

Tracker: A Universal Location Management System for Mobile Agents. Proc. The
European Wireless 2002 Conference, Next Generation Wireless Networks:
Technologies, Protocols, Services and Applications, pp. 572-580, Florence, Italy,
February 25-28, 2002.

[2] T.Bray, J. Paoli and C. M. Sperberg-McQueen. Extensible Markup Language
(XML) 1.0 Specifications. World Wide Web Consortium,
http://ww.w3.org/TR/Rec-xml

[3] XML Path Language (XPath). World Wide Web Consortium,
http://www.w3.org/TR/xpath

[4] K. Koloniari and E. Pitoura. Bloom-Based Filters for Hierarchical Data. Technical
Report 29-2002, Department of Computer Science, University of Ioannina, Nov
2002.

[5] G. Koloniari and E. Pitoura, “Bloom-Filters for Hierarchical Data”, Proceeding of
the 5th Workshop on Distributed Data and Structures (WDAS), 2003.

[6] Services Definition Language (WSDL), Web page, http://www.w3.org/TR/WSDL.
[7] Ouzzani, M., Benatallah, B., and Bouguettaya, A.: Ontological Approach for

Information Discovery in Internet Databases. Distributed and Parallel Databases
Journal, 8:367-392, 2000.

[8] A. Levy, D. Srivastava, and T. Kirk. Data model and query evaluation in global
information systems. Intelligent Information Systems, 5(2), September 1996.

[9] Jason I. Hong. The Context Fabric: An Infrastructure for Context-Aware
Computing

[10] D. Pfoser, N. Tryfona and V. Verykios. Services-Based Data Management in a
Global Computing Environment. Computer Technology Institute Athens, Hellas

[11] XML Query (XQuery). World Wide Web Consortium,
http://www.w3.org/XML/Query

http://ww.w3.org/TR/Rec-xml
http://www.w3.org/TR/xpath
http://softsys.cs.uoi.gr/dbglobe/private/TR02-29.pdf
http://www.w3.org/TR/xpath

	Introduction
	Overview
	Cell Manager Infrastructure
	Primary Objects. The primary providers of resources are either mobile (e.g. smart phone, PDA) or stationary (e.g. pc, workstation) devices called POs (Primary Objects). A PO has the following basic functionality (i) request and retrieve data,
	Cell Manager Specification. The Cell Manager is consisted by the following components (also see figure 2.1).
	Metadata management. The metadata management mechanism that is adopted is an important design issue for systems like this one. Firstly because it is responsible for the efficient data retrieval, and secondly because it affects the type of queries that th

	Context Awareness Queries
	Context containment queries. Basically context containment queries are an extended notion of regular containment queries. The goal here is contain the results of the query within the boundaries of a specific contextual concept. This of course means that
	Continues queries. A continual query is a standing query that monitors updates of interest using distributed triggers and notifies the user of changes whenever an update of interest reaches specified thresholds or some time limit is reached.

	Querying Cell Managers via Communities
	Organizing Communities using Taxonomies
	Community Administrator Server (CoAS)
	CoAS architecture. Figure 3.4 illustrates the general architecture of a CoAS. In detail, the components that comprise a CoAS are the following:
	Creating the Global Taxonomy Tree and the Communities. As mentioned in section 2.1.2 CMs classifies internally (and locally) the services registered to their cell according to their concept. We can use the classification of the CMs to start the creatio
	Keeping Communities Updated. As already mentioned
	Using Bloom filters to Match Resources/Data to Communities (CoASs). Bloom filter summaries are a mechanism to efficiently identify the CoAS that may contain data relevant to an incoming query. Bloom filters are hash based indexing structures designed t

	Scenarios and Queries Utilizing the Communities
	Registering a new service. When a PO logins to the system for the first time it needs to register its services with it. In order to make the idea of communities to work, the newly available services must also register to a CoAS. The process of the regist
	Servicing a Query. From time to time the various POs, services and users need to ask queries to locate/discover the available services. The general procedure for servicing such a query is as follows:
	Examples of Supported Queries. The queries that are supported by CoASs are divided into two major categories. In the first category we have queries that are run once and in the second category we have standing queries that need to be revaluated from time

	Implementation Issues
	Conclusions

